Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Hazard Mater ; 452: 131214, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36989786

RESUMO

Cadmium (Cd) can interfere with plant gene expression, change the content of metabolites and affect plant growth. In this study, untargeted metabolomics (LC-MS) and RNA-Seq sequencing were performed on root tissues of Pistia stratiotes exposed to Cd stress. The results showed that cadmium stress affected the accumulation and transport of cadmium in plants and increased the content of soluble sugar, the activities of ascorbate peroxidase (APX), and peroxidase (POD) by 34.89%, 41.45%, and 6.71% on average, and decreased the activity of superoxide dismutase (SOD) by 51.51% on average. At the same time, the contents of carotenoid, chlorophyll a, and chlorophyll b decreased by 29.52%, 20.11%, and 13.14%, respectively, Thus affecting the growth and development of plants. Metabolomic analysis showed that Cd stress affected eight metabolic pathways, involving 27 differentially expressed metabolites, mainly including unsaturated fatty acids, amino acids (phenylalanine), nucleotides, sulfur compounds, and flavonoids. By transcriptome analysis, a total of 3107 differentially expressed genes (DEGs, 2666 up-regulated genes, and 441 down-regulated genes) were identified, which were mainly involved in four pathways, among which glutathione metabolism and lignin biosynthesis were the key metabolic pathways. In conclusion, this study reveals the metabolic and transcriptional response mechanisms of P. stratiotes to Cd stress through multi-omics, providing the theoretical basis for the phytoremediation of water contaminated by Cd.


Assuntos
Araceae , Cádmio , Cádmio/toxicidade , Cádmio/metabolismo , Clorofila A , Transcriptoma , Araceae/metabolismo , Perfilação da Expressão Gênica , Redes e Vias Metabólicas , Raízes de Plantas/metabolismo
2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-515011

RESUMO

BackgroundAlthough inactivated COVID-19 vaccines are proven to be safe and effective in the general population, the dynamic response and duration of antibodies after vaccination in the real world should be further assessed. MethodsWe enrolled 1067 volunteers who had been vaccinated with one or two doses of CoronaVac in Zhejiang Province, China. Another 90 healthy adults without previous vaccinations were recruited and vaccinated with three doses of CoronaVac, 28 days and 6 months apart. Serum samples were collected from multiple timepoints and analyzed for specific IgM/IgG and neutralizing antibodies (NAbs) for immunogenicity evaluation. Antibody responses to the Delta and Omicron variants were measured by pseudovirus-based neutralization tests. ResultsOur results revealed that binding antibody IgM peaked 14-28 days after one dose of CoronaVac, while IgG and NAbs peaked approximately 1 month after the second dose then declined slightly over time. Antibody responses had waned by month 6 after vaccination and became undetectable in the majority of individuals at 12 months. Levels of NAbs to live SARS-CoV-2 were correlated with anti-SARS-CoV-2 IgG and NAbs to pseudovirus, but not IgM. Homologous booster around 6 months after primary vaccination activated anamnestic immunity and raised NAbs 25.5-fold. The NAb inhibition rate subsequently rose to 36.0% for Delta (p=0.03) and 4.3% for Omicron (p=0.004), and the response rate for Omicron rose from 7.9% (7/89) to 17.8% (16/90). ConclusionsTwo doses of CoronaVac vaccine resulted in limited protection over a short duration. The homologous booster slightly increased antibody responses to the Delta and Omicron variants; therefore, the optimization of booster procedures is vital. FundingKey Research and Development Program of Zhejiang Province; Key Program of Health Commission of Zhejiang Province/ Science Foundation of National Health Commission; Major Program of Zhejiang Municipal Natural Science Foundation.

3.
Bioresour Bioprocess ; 8(1): 96, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38656090

RESUMO

The fermentation process is dynamically changing, and the metabolic status can be grasped through real-time monitoring of environmental parameters. In this study, a real-time and on-line monitoring experiment platform for substrates and products detection was developed based on non-contact type near-infrared (NIR) spectroscopy technology. The prediction models for monitoring the fermentation process of lactic acid, sophorolipids (SLs) and sodium gluconate (SG) were established based on partial least-squares regression and internal cross-validation methods. Through fermentation verification, the accuracy and precision of the NIR model for the complex fermentation environments, different rheological properties (uniform system and multi-phase inhomogeneous system) and different parameter types (substrate, product and nutrients) have good applicability, and R2 was greater than 0.98, exhibiting a good linear relationship. The root mean square error of prediction shows that the model has high credibility. Through the control of appropriate glucose concentration in SG fermentation as well as glucose and oil concentrations SLs fermentation by NIR model, the titers of SG and SLs were increased to 11.8% and 26.8%, respectively. Although high cost of NIR spectrometer is a key issue for its wide application in an industrial scale. This work provides a basis for the application of NIR spectroscopy in complex fermentation systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...